Achieving Energy Efficiency in Data Centers
Meet Your Panelists:

Mike Carter

Justin Kale
NEEA Northwest Industrial Training

- **Provided by:**

 Northwest Regional Industrial Training Center:

 (888) 720-6823

 industrial-training@industrial.neea.org

- **Co-sponsored by your utility and:**

 - Washington State University Extension Energy Program

 - Bonneville Power Administration

 - Northwest Food Processors Association

- **Utility incentives and programs:**

 Contact your local utility representative
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823.

- **Chilled Water and Cooling Towers**
 - **Energy Efficiency of Chilled Water Systems and Cooling Towers**
 - April 25-26: Medford, OR
 - May 1-2: Twin Falls, ID
 - September 10-11: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - **Energy Efficiency and Data Centers**
 - June 4: Bend, OR
 - August 22: Pocatello, ID

- **Energy Management:**
 - **Introduction to Strategic Energy Management**
 - April 25: Missoula, MT
 - November 12: Hermiston, OR
 - **Introduction to Energy Data Management**
 - April 23: Everett, WA
 - August 27: Missoula, MT
 - October 15: Yakima, WA
 - October 17: Roseburg, OR
 - **Energy Data Management: A Hands-on Workshop**
 - May 9: Portland, OR
 - November TBD: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - Motors Systems Management Best Practices
 May 7: Yakima, WA (rescheduled)
 - Adjustable Speed Drive Applications and Energy Efficiency
 July 23: Nampa, ID
 - Optimizing Pump Systems: A Measure-Based Approach
 December TBD: Boise, ID

- **Pneumatic Systems**
 - Pneumatics Conveying Systems Energy Management
 June 6: Pocatello, ID

- **Pumps:**
 - Pumping System Assessment Tool (PSAT)
 March 28: Spokane, WA
 - Pumping Systems Optimization
 September 25: Longview, WA
 - Optimizing Pumping Systems: A Measurement-Based Approach
 November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**

 Industrial Refrigeration Systems Energy Management

 March 21: Pocatello, ID
 June 27: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar http://neea.org/get-involved/calendar and look for it by date and title. Once you find the webinar you want to register for, click on the title and you will find a description and registration information. All webinars are free!

- **Energy Management:**
 - Developing and Energy Plan
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - Energy Management Opportunities for Industrial Customers
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management contained:**
 - Energy Efficiency Investment Analysis
 - June 18: 9-10am PST
 - October 15: 9-10am PST

- **Motors:**
 - Adjustable Speed Drives
 - April 16: 9-10am PST

- **Power Factor:**
 - Improve Power Factor and Your Facility
 - December 17: 9-10am PST

- **Space Conditioning:**
 - Boiler and Chiller Maintenance for Maximum Efficiency
 - July 16: 9-10am PST
 - PGE Webinar: Intro to Ammonia Refrigeration
 - March 26: 8-9 am PST

http://neea.org/get-involved/calendar
Table of Contents

- Introduction
- Measure
- Power Conversion
- Server Load
- Cooling Equipment
- Case Studies
- Resources

Source: LBL
Introduction

- Over 6,700 data centers in 2006
- More than 1,220 colocation data centers (for rent) in the US

Source: Data Center Map
Introduction

- Ideal site selection criteria*
 - Protection from hazards
 - Easy accessibility
 - Features that accommodate future growth and change
- Zoning and ordinances
- Known hazards
 - Natural disasters
 - EMI
- Multiple access routes

*Douglas Alger, Cisco
Introduction

- Pre-Existing Infrastructure
- Power Analysis
- Cooling Capabilities
 - Geographic enthalpy maps
 - Economizers
- Structured Cabling
- Amenities and Obstacles
 - Clearances
 - Freight Issues
 - Loading Dock
 - Freight Elevators

Source: LBL
Introduction

- 2009 Avetec Study
 - 41 data center managers responsible for 223 data centers
 - Industry (63%), academia (22%), government (10%)
 - 59% of the sites track and report direct power and cooling costs.
 - Only 34% use specific metrics and/or statistics (e.g., PUE) to measure and report energy efficiency.
 - More than two-thirds of the data centers do no in-house testing to validate the energy efficiency of computer hardware.
 - Rely on vendors' performance specifications.
 - Only 29% of the surveyed organizations said they have a formal roadmap for moving their data center(s) to greater power and cooling efficiency.
Measure, Measure, Measure

- Benchmarking

Source: LBL
Energy intensity

- 35X higher than office building
- 100 to 400w/sqft
- 15,000 sqft
- 25 kW+ racks
 - Typically 8 kW

Electric Intensity (kWh/sqft) -- Data Centers

575.46 kWh/sqft

Electric Intensity (kWh/sqft) -- Large Office Buildings

16.4 kWh/sqft
Measure, Measure, Measure

- Benchmarking
 - Power Utilization Effectiveness (PUE)

 \[
 \text{PUE (0)} = \frac{\text{Total Data Center Power}}{\text{IT Power}}
 \]

 - <1.3 PUE Excellent
 - 1.3 to 1.7 PUE Good
 - >1.7 PUE Fair
 - Can be 3.0+

Source: LBL

Avg. = 1.83
Measure, Measure, Measure

- Benchmarking
 - PUE (0) at part loading
 - Affects peak demand

Source: William Kosik, HP Technology Services
Measure, Measure, Measure

- Benchmarking
 - Improving PUE from 2.0 to 1.6 for a data center with a 2.5 MW IT load
 - A 20% energy savings or over $800,000 annual savings at $0.08/kilowatt hour.

Real-time PUE Display

Source: FEMP
Measure, Measure, Measure

- **PUE Categories**

<table>
<thead>
<tr>
<th></th>
<th>Cat. 0</th>
<th>Cat. 1</th>
<th>Cat. 2</th>
<th>Cat. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT energy</td>
<td>UPS Output</td>
<td>UPS Output</td>
<td>PDU Output</td>
<td>Server Input</td>
</tr>
<tr>
<td>measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of IT</td>
<td>Peak IT electric demand</td>
<td>IT annual electric energy</td>
<td>IT annual electric energy</td>
<td>IT annual electric energy</td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>Peak Total electric meter demand*</td>
<td>Total annual energy (electric, gas)</td>
<td>Total annual energy (electric, gas)</td>
<td>Total annual energy (electric, gas)</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*All-electric
Measure, Measure, Measure

- Other Benchmarking Metrics
 - kWh over time for IT loads
 - Watts per CFM for cooling loads (<1.2 w/CFM)
 - Watts per square foot by rack, work cell and usable floor space
 - Total energy cost per square foot
 - IT energy cost, by rack, by zone, by floor
 - Transactions per kWh

Source: The Green Grid Association
Measure, Measure, Measure

- Benchmarking
 - Lighting power density
 - Goal is <1 watt/sqft
 - Occupancy sensors
 - Bi-level lighting
 - Task lighting

Source: LBL
Measure, Measure, Measure

- Benchmarking
 - Cooling plant efficiency
 - Goal is <1 kW/ton

Source: LBL
Solutions

- Three major opportunities for energy savings.
Power Conversion

- **Electrical infrastructure**
 - Four components represent the majority of losses

 Efficiencies: 99.0% - 99.4% 84.0% - 93.7% 98.5% 90% - 95%

<table>
<thead>
<tr>
<th>N losses</th>
<th>0.5%</th>
<th>6%</th>
<th>1.5%</th>
<th>5%</th>
<th>13%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N losses</td>
<td>0.5%</td>
<td>12%</td>
<td>1.5%</td>
<td>6%</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Redundancy decreases efficiency

Source: Ken Kutsmeda, KlingStubbins
Redundancy affect on UPS efficiency

- Efficiency falls as loading decreases
- Average loading of 20% to 30% is not uncommon.
- Goals
 - >50% UPS Load Factor
 - >85% system efficiency

Source: FEMP
Redundancy affect on UPS efficiency

- Shutdown UPS modules when Redundancy Level exceeds N+1 or 2N
- Install a scalable/modular UPS
- Install a smaller UPS size to fit present load capacity
- Transfer loads between UPS modules to maximize load factor % per active UPS

Source: LBNL
Power Conversion

- Eliminate inefficient equipment

Source: Ken Kutsmeda, KlingStubbins

Facebook
Prineville, OR
Power Conversion

- Facility-Level DC Distribution

- Demonstration project at Sun Microsystems
- 10% to 20% efficiency improvement
- Lower cooling load
- Fewer points of failure
Power Conversion

- Rack-Level DC Distribution

 - Smaller savings
 - Thermal benefits
 - Smaller power supply in server

Source: FEMP
Server Load

- Multiplier affect
 - Reduce IT load → reduce infrastructure load

- Retire unused IT servers

- ENERGY STAR servers
 - 30% more efficient
 - Minimum efficiencies @ 10% load
 - 80% for power supplies
 - 0.80 power factor
 - 55 to 150 watt idle power
Server Load

- Enable power management features
- Consolidation and virtualization
 - High utilization is goal (60% to 80%)
 - 10% to 40% savings
- Data management
 - Put less accessed data on lowest efficiency servers
 - Massive array of idle disks (MAID)
 - Deduplicate data

Source: ENERGY STAR
Server Load

- Power/space monitoring

Source: FEMP
Cooling Equipment

- Traditional data center cooling infrastructure

Source: Dr. Madhu Iyengar, IBM
Cooling Equipment

- Better air management
 - Higher temperature limits
 - ASHRAE Thermal Guidelines for Data Processing Environments
 - Server fan speeds/energy will increase with higher temperatures
 - Requires containment and possible conductor derating
 - Enables “chillerless” facilities

<table>
<thead>
<tr>
<th></th>
<th>Class 1, 2 Recommended</th>
<th>Class 1 Allowable</th>
<th>Class 2 Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Temperature</td>
<td>64.4F DB</td>
<td>59F DB</td>
<td>50F DB</td>
</tr>
<tr>
<td>High Temperature</td>
<td>80.6F DB</td>
<td>89.6F DB</td>
<td>95F DB</td>
</tr>
<tr>
<td>High Moisture</td>
<td>60% RH, 59F DP (50% RH, 80.6F DB)</td>
<td>80% RH, 62.6F DP (40% RH, 89.6F DB)</td>
<td>80% RH, 69.8F DP (45% RH, 95F DB)</td>
</tr>
</tbody>
</table>
Cooling Equipment

- Air mixing is inefficient

Source: EPA
Cooling Equipment

- Containment
 - Reduces fan energy (8% to 10%)
 - Improves AC efficiency
 - Increases cooling capacity (20%)

COLD-Aisle Containment (existing)

HOT air in room

Cold Aisle

HOT-Aisle Containment (new)

COLD air in room

Hot Aisle

Source: Schneider Electric, Joe Capes
Cooling Equipment

- Containment
 - Enclose return air
 - Barriers
 - Air curtains

Source: FEMP
Cooling Equipment

- Containment
 - Use blanking panels (Δ20F)
 - Do not overuse permeable floor tiles
 - Reduces under-floor pressure

Source: FEMP
Cooling Equipment

- Free cooling
 - Outside-air economizers
 - 40°F to 80°F DB OA
 - Dust and humidity are a concern
 - Savings example
 - 4,000 hours of economizer run time
 - 300 tons for 1 MW load
 - 0.5 kW/ton chiller efficiency
 - $0.08/kWh electric rate
 - $48,000 savings

Source: LBNL

Source: www.42u.com
Cooling Equipment

- Free cooling
 - Water-side economizers
 - 40F to 64F WB OA
 - Half the hours of air-side
 - Compatible with “warm” inlet temperatures
 - No air contamination concern

Source: LBNL

Source www.42u.com
Cooling Equipment

- InRow Cooling
 - Close-coupled

Source: Schneider Electric
Cooling Equipment

- **InRow Cooling**
 - Capable of cooling high densities > 30 kW per rack
 - Dynamic fan control matches heat removal to heat generation
 - Elimination of mixing enables a predictable cooling pattern
 - Reduced deployment cycle through use of modular components
 - 10% to 20% more efficient than central or computer room air handlers (sensible cooling operation)

Source: Joe Capes, Schneider Electric
Cooling Equipment

- **Liquid cooling**
 - Liquid has greater heat removal capacity (3500X air)
 - Pumps are more efficient than fans (10% of fan HP)
 - Water damage is a concern
 - 15% to 25% savings

Source: Dr. Madhu Iyengar, IBM
Source: LBNL
Cooling Equipment

Air Energy Recovery

- **Baseline:** 10,000 sqft, 2 MW, 78F supply, 96F return, Denver (CO)

<table>
<thead>
<tr>
<th>OA Economizer Technique</th>
<th>Annual Savings</th>
<th>Investment Delta</th>
<th>Simple Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct mixing</td>
<td>$400</td>
<td>$1,250</td>
<td>3.2 yrs</td>
</tr>
<tr>
<td>Indirect tempering</td>
<td>$1,300</td>
<td>$5,150</td>
<td>4.0 yrs</td>
</tr>
<tr>
<td>Enthalpy wheel</td>
<td>$4,350</td>
<td>$20,750</td>
<td>4.8 yrs</td>
</tr>
<tr>
<td>Dual duct</td>
<td>$6,530</td>
<td>$43,450</td>
<td>6.7 yrs</td>
</tr>
</tbody>
</table>

Source: John Peterson, HP 2012 ASHRAE Winter Conf.
Case Studies

- Lucasfilm Ltd. (CA)
 - 13,500 sqft
 - 4,300 AMD processors

<table>
<thead>
<tr>
<th>Measure</th>
<th>kWh/year</th>
<th>Cost Savings/ year</th>
<th>Capital Cost ($)</th>
<th>Simple Payback (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove redundant rack mounted UPS</td>
<td>109,500</td>
<td>$12,000</td>
<td>$0</td>
<td>immediate</td>
</tr>
<tr>
<td>Turn servers off during downtime/power management</td>
<td>273,800</td>
<td>$30,000</td>
<td>$10,000</td>
<td>0.3</td>
</tr>
<tr>
<td>Stage chillers to maintain high load factor</td>
<td>92,800</td>
<td>$10,000</td>
<td>$4,000</td>
<td>0.4</td>
</tr>
<tr>
<td>Operate UPS in switched by-pass mode</td>
<td>887,300</td>
<td>$98,000</td>
<td>$100,000</td>
<td>1.0</td>
</tr>
<tr>
<td>Improve airflow</td>
<td>806,700</td>
<td>$89,000</td>
<td>$113,000</td>
<td>1.3</td>
</tr>
<tr>
<td>Implement water-side economizer</td>
<td>928,600</td>
<td>$103,000</td>
<td>$200,000</td>
<td>1.9</td>
</tr>
<tr>
<td>Install lighting controls</td>
<td>10,500</td>
<td>$1,000</td>
<td>$2,500</td>
<td>2.1</td>
</tr>
<tr>
<td>Total for all measures</td>
<td>3,109,200</td>
<td>$343,000</td>
<td>$429,500</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Case Studies

- Sybase, Inc. (CA)
 - 16,000 sqft
 - 440 racks
 - 100 cabinets
 - 2,500kVA transformer @ 13kV/480V
 - Two redundant 500kVA UPS

<table>
<thead>
<tr>
<th>Measure</th>
<th>Energy Savings (kWh/year)</th>
<th>Cost Savings ($/year)</th>
<th>Capital Cost ($)</th>
<th>Simple Payback (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install high-efficiency base-load chiller</td>
<td>476,000</td>
<td>$54,000</td>
<td>$510,000 (rebate $54,000)</td>
<td>8.4</td>
</tr>
<tr>
<td>Implement custom control program</td>
<td>75,000</td>
<td>$9,000</td>
<td>$6,000</td>
<td>0.7</td>
</tr>
<tr>
<td>Air Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relocate perforated tiles</td>
<td>112,000</td>
<td>$13,000</td>
<td>$0</td>
<td>0</td>
</tr>
<tr>
<td>Seal raised floor</td>
<td>150,000</td>
<td>$17,000</td>
<td>$0</td>
<td>0</td>
</tr>
<tr>
<td>Install variable frequency drives (VFD) on 20 CRAHs</td>
<td>866,000</td>
<td>$99,000</td>
<td>$123,000 (rebate $22,000)</td>
<td>0.8</td>
</tr>
<tr>
<td>Install partial air-side economizer</td>
<td>313,000</td>
<td>$36,000</td>
<td>$53,000 (rebate $24,000)</td>
<td>0.8</td>
</tr>
<tr>
<td>Add heat recovery to air-side economizer</td>
<td>65,000</td>
<td>$7,000</td>
<td>$1,000</td>
<td>0.1</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control lights with 30-minute enabled zones</td>
<td>238,000</td>
<td>$27,000</td>
<td>$17,000</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Total for all measures: 2,295,000 kWh/year, $262,000/year, $710,000 (rebate $130,000) with 2.2 years payback.
Case Studies

The Hanover Insurance Group (MA)

- 13,000 ft² data center overcooled

- Solutions
 - Implemented Demand Based Cooling™ (DBC) airflow and thermal management system
 - Installed cut-out covers into floor openings
 - Blanking panels into key rack openings
 - Adjusted some CRAC set points

- Results
 - Five out of 13 CRAC units were placed into hot-standby
 - Energy usage for cooling reduced by 27%
 - Increased cooling redundancy
 - Increased IT load capacity by 70kW

<table>
<thead>
<tr>
<th>Cost of project:</th>
<th>$144,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual energy savings</td>
<td>600,000 kWh</td>
</tr>
<tr>
<td>Energy cost savings</td>
<td>$96,000/yr</td>
</tr>
<tr>
<td>Utility incentive</td>
<td>$21,500</td>
</tr>
<tr>
<td>Company payback</td>
<td>16 months</td>
</tr>
</tbody>
</table>
Resources

- DOE Data Center Profiler (DC Pro) Software Tool Suite
 - A web-based application accessible from any computer
 - DC Pro Profiling Tool
 - Air-Management Tool
 - Raised floor w/hot/cold aisles
 - Electrical Systems Tool

DC Pro Tool

Inputs
- Description
- Utility bill data
- System Information
 - IT
 - Cooling
 - Power
 - Onsite generation

Outputs
- Overall picture of energy use and efficiency
- End-use breakout
- Potential areas for energy efficiency improvement
- Overall energy-use reduction potential
Resources

- EPA/DOE Labs for the 21st Century
- ASHRAE Green Tips for Data Centers
- Data Center Energy Practitioner Program
 - Level I & Level II certification
 - Specialists tracks
- 80 PLUS® Certified Power Supplies and Manufacturers
- ENERGY STAR Portfolio Manager data center model
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823.

- **Chilled Water and Cooling Towers**
 - Energy Efficiency of Chilled Water Systems and Cooling Towers
 - April 25-26: Medford, OR
 - May 1-2: Twin Falls, ID
 - September 10-11: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - *Energy Efficiency and Data Centers*
 - June 4: Bend, OR
 - August 22: Pocatello, ID

- **Energy Management:**
 - *Introduction to Strategic Energy Management*
 - April 25: Missoula, MT
 - November 12: Hermiston, OR
 - *Introduction to Energy Data Management*
 - April 23: Everett, WA
 - August 27: Missoula, MT
 - October 15: Yakima, WA
 - October 17: Roseburg, OR
 - *Energy Data Management: A Hands-on Workshop*
 - May 9: Portland, OR
 - November TBD: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - **Motors Systems Management Best Practices**
 May 7: Yakima, WA (rescheduled)
 - **Adjustable Speed Drive Applications and Energy Efficiency**
 July 23: Nampa, ID
 - **Optimizing Pump Systems: A Measure-Based Approach**
 December TBD: Boise, ID

- **Pneumatic Systems**
 - **Pneumatics Conveying Systems Energy Management**
 June 6: Pocatello, ID

- **Pumps:**
 - **Pumping System Assessment Tool (PSAT)**
 March 28: Spokane, WA
 - **Pumping Systems Optimization**
 September 25: Longview, WA
 - **Optimizing Pumping Systems: A Measurement-Based Approach**
 November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**

 Industrial Refrigeration Systems Energy Management

 March 21: Pocatello, ID
 June 27: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar http://neea.org/get-involved/calendar and look for it by date and title. Once you find the webinar you want to register for, click on the title and you will find a description and registration information. All webinars are free!

- **Energy Management:**
 - Developing and Energy Plan
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - Energy Management Opportunities for Industrial Customers
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management contained:**
 Energy Efficiency Investment Analysis
 June 18: 9-10am PST
 October 15: 9-10am PST

- **Motors:**
 Adjustable Speed Drives
 April 16: 9-10am PST

- **Power Factor:**
 Improve Power Factor and Your Facility
 December 17: 9-10am PST

- **Space Conditioning:**
 Boiler and Chiller Maintenance for Maximum Efficiency
 July 16: 9-10am PST
 PGE Webinar: Intro to Ammonia Refrigeration
 March 26: 8-9 am PST

http://neea.org/get-involved/calendar
Thank You

- Please take our [online survey](#)