Boiler and Chiller Maintenance for Maximum Efficiency
Meet Your Panelists:

Mike Carter

Justin Kale
Provided by:

Northwest Regional Industrial Training Center:
(888) 720-6823
industrial-training@industrial.neea.org

Co-sponsored by your utility and:

• Washington State University Extension Energy Program
• Bonneville Power Administration
• Northwest Food Processors Association

Utility incentives and programs:

Contact your local utility representative
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823.

- **Chilled Water and Cooling Towers**
 - Energy Efficiency of Chilled Water Systems and Cooling Towers
 - April 25-26: Medford, OR
 - May 1-2: Twin Falls, ID
 - September 10-11: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - **Energy Efficiency and Data Centers**
 - June 4: Bend, OR
 - August 22: Pocatello, ID

- **Energy Management:**
 - **Energy Management: Introduction to Best Practices**
 - April 25: Missoula, MT
 - November 12: Hermiston, OR
 - **Introduction to Energy Data Analysis and KPIs**
 - April 23: Everett, WA
 - August 27: Missoula, MT
 - October 15: Yakima, WA
 - October 17: Roseburg, OR
 - **Energy Data Analysis: Hands-on Workshop**
 - May 9: Portland, OR
 - November 14: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - Motor System Management Best Practices
 - Cancelled: February 27: Yakima, WA
 - Adjustable Speed Drive Applications and Energy Efficiency
 - July 23: Nampa, ID

- **Pneumatic Systems**
 - Pneumatics Conveying Systems Energy Management
 - June 6: Pocatello, ID

- **Pumps:**
 - Pumping System Assessment Tool (PSAT)
 - March 28: Spokane, WA
 - Pumping Systems Optimization
 - September 25: Longview, WA
 - Optimizing Pumping Systems: A Measurement-Based Approach
 - November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**
 - *Air Cooled Refrigeration and Energy Efficiency*
 - February 28: Shelton, WA (half-day)
 - *Industrial Refrigeration Systems Energy Management*
 - March 21: Pocatello, ID
 - June 27: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar [http:// neea.org/get-involved/calendar](http://neea.org/get-involved/calendar) and look for it by date and title. Once you find the webinar you want to register for, click on the title and you will find a description and registration information. All webinars are free!

- **Data Centers:**
 - Achieving Energy Efficiency in Data Centers
 - March 19: 9-10am

- **Energy Management:**
 - Developing and Energy Plan
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - Energy Management Opportunities for Industrial Customers
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management contained:**
 - *Energy Efficiency Investment Analysis*
 - June 18: 9-10am PST
 - October 15: 9-10am PST

- **Motors:**
 - *Adjustable Speed Drives*
 - April 16: 9-10am PST

- **Power Factor:**
 - *Improve Power Factor and Your Facility*
 - December 17: 9-10am PST

- **Space Conditioning:**
 - *Boiler and Chiller Maintenance for Maximum Efficiency*
 - February 19: 9-10am PST
 - July 16: 9-10am PST

- **PGE Webinar: Intro to Ammonia Refrigeration**
 - March 26: 8-9 am PST

http://neea.org/get-involved/calendar
Table of Contents

- Boiler basics
- Boiler maintenance
 - Equipment
 - Piping
 - Combustion
- Chiller basics
- Chiller maintenance
 - Compressor
 - Evaporator/Condenser
 - Economizers
 - Air Handlers
Maintenance

- Proactive versus reactive
 - Log books are important
 - Chillers
 - Refrigerant temperatures and pressures
 - Condenser-water entering and leaving temperatures
 - Chilled-water entering and leaving temperatures
 - Run times for automatic refrigerant purge units
 - Real-time monitoring
- Predictive maintenance

Source: www.sxc.hu
Boiler Basics

- **Power (Capacity)**
 - Boiler capacity (MMBtuh or MMBtu/hr)
 - Boiler horsepower (bhp) = 33,475 Btu/hr (9.8 kW)
 - The energy rate needed to evaporate 34.5 lb (15.65 kg or 4.2 gallons) of water at 212°F (100°C) in one hour
 - Equivalent to a 12 hp electric motor
 - Bhp is old terminology—be careful!
 - Motor power (kW) = Horsepower x 0.746/efficiency
 - A 12 hp motor = 12 hp x 0.746/0.91 = 9.83 kW
 - 1 kW = 3,412 Btu/hr
Boiler Basics

- **Power (Capacity)**
 - Boiler horsepower (bhp) can be converted into pounds of steam by multiplying horsepower by 34.5

 \[200 \text{ bhp} \times 34.5 = 6,900 \text{ lb of steam per hour}\]

 - Pounds of steam can be converted to horsepower by dividing pounds steam per hour by 34.5

 \[5,000 \text{ lb of steam} / 34.5 = 145 \text{ bhp boiler}\]
Boiler Basics

- **Energy (Quantity)**
 - 1 pound steam = 970 Btu \(^{(water\text{-}to\text{-}steam \ energy)}\)
 - 1 cf = 1,026 Btu
 - 1 ccf = 102,600 Btu
 - 1 therm = 100,000 Btu
 - 1 kWh = 3,412 Btu
Boiler Basics

- Types of modern boilers
 - Firetube boilers (or Scotch Marine Boilers)
 - Watertube boilers
 - Cast iron boilers
 - Vertical boilers
 - Firebox boilers
 - Electric boilers

Source: DOE EERE
Boiler Basics

Electric Boilers
- Available from 10 kW for the smaller units up to over 3,000 kW
- Often used in tandem with a gas-fired boiler in a fuel-switching strategy
- Replacement of an electric element bundle (13 to 18 year life) can range in price from $2,000 to $2,500 for a 75 kW to 100 kW electric boiler

Electrode Steam Boilers
- Operate at high voltages (12 kV or 24 kV)
- Submersible electrode boilers
 - Rely on immersed electrodes to conduct electricity through the boiler water
- High-velocity jet electrode boilers
 - In this design, the water jet (striking an electrode plate) is the resistance element
- Pros include lower installed capital cost, higher reliability, higher efficiency (99.5% at 100% output) and rapid response

Image source: Precision Boilers
Boiler Basics

- PID Control Scheme
 - Proportional
 - Present error
 - Integral
 - Size
 - Duration
 - Time
 - Derivative
 - Rate of change (surge)
 - A second PID control (10%)

Source: Wikipedia, Urquizo
Boiler Basics

- NOx Control Strategies
 - Combustion modification
 - Reduce air preheat temperature
 - Low excess air (watch CO)
 - Staged secondary combustion
 - Flue gas recirculation
 - Post-treatment
 - Selective Non-Catalytic Reduction—a NOx reducing agent (such as ammonia or urea) is injected into the boiler exhaust at a temperature range 1,600° to 2,200°F
 - Selective Catalytic Reduction—a reducing agent (such as ammonia), combined with a catalyst is injected into the boiler exhaust at a temperature range 500° to 1,100°F
Boiler Basics

- **Thermostatic**
 - Bellows
 - Bi-metallic

- **Mechanical**
 - Float and lever
 - Inverted bucket
 - Open bucket
 - Float and Thermostatic (F&T)

- **Thermodynamic**
 - Disc
 - Piston
 - Lever
 - Orifice

(Source: DOE)

(Source: Oak Ridge National Laboratory)
Boiler Equipment Maintenance

- Clean heat transfer surfaces
 - Clean slag off tube exterior
 - Flush boiler with water to remove loose internal scale and sediment.
 - Prevent scale formation.
 - Pretreatment of boiler make-up water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals)
 - Chemical injection into the boiler feedwater
 - Adopting proper boiler blowdown practices

Source: U.S. Geological Survey
Boiler Equipment Maintenance

- Regular internal tube inspections
 - Every 60 days until the water treatment program is properly regulated
 - Thereafter, every 6 to 12 months; more often if an unsatisfactory condition is found.

Source: Putzmaus® America
Boiler Equipment Maintenance

- Inspect all gasketing on front and rear doors.
- Add/restore boiler refractory
 - Patch and wash coat as required
- Check all hand hole plates and man hole plates for leaks at normal operating temperatures and pressures

Source: Bill Maloney
Boiler Equipment Maintenance

- Optimize deaerator vent rate
 - Will typically find a historically high vent rate in order to keep the concentration of non-condensables in the boiler feed water low
 - With improved water quality, vent rate can be decreased

Source: Hurst Boiler & Welding Company, Inc.
Boiler Piping Maintenance

- **Fix broken** *steam traps*
 - One 1/8" diameter stuck-open steam trap orifice on a large boiler can cost $1,000 (15 psig) to $5,000 (140 psig) per year in increased natural gas consumption
 - 1 lb/hr ~ 1,000 Btu/hr

- **Insulate** *steam pipes* with at least 1/2" insulation
 - For a 350°F process steam pipe (100 ft), savings are $5,000 for 2" diameter and $10,000 for 4" diameter pipe
 - Install removable insulation on uninsulated valves and fittings.
Boiler Combustion Maintenance

- Blue flame is good

- Yellow flame indicates incomplete combustion
Boiler Combustion Maintenance

- Calibrate jackshaft linkages for optimum air:fuel ratio

Source: Industrial Controls, Inc.
Proper burner **air:fuel ratio**

- Excess air is the extra amount of air added to the burner above that which is required to completely burn the fuel (beyond stoichiometric).

<table>
<thead>
<tr>
<th>Excess %</th>
<th>Temp. °F (Flue-Comb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Oxy</td>
</tr>
<tr>
<td>9.5</td>
<td>2.0</td>
</tr>
<tr>
<td>28.1</td>
<td>4.0</td>
</tr>
<tr>
<td>81.6</td>
<td>6.0</td>
</tr>
<tr>
<td>200°F</td>
<td>600°F</td>
</tr>
<tr>
<td>85.4%</td>
<td>76.0%</td>
</tr>
<tr>
<td>84.7%</td>
<td>74.0%</td>
</tr>
<tr>
<td>82.8%</td>
<td>68.2%</td>
</tr>
</tbody>
</table>

- Efficiency improvements
 - 82.8% \rightarrow 85.4% = 2.6%
 - 68.2% \rightarrow 76.0% = 7.8%
Boiler Combustion Maintenance

- Burner tips
 - Burner tips should be cleaned on a regular basis
 - Clean the tips by hand to avoid changing the shape or performance of the tip

Photos courtesy of John Zink Company
Boiler Blowdown

- Blowdown for steam boilers
 - Check the normal operating water level (NOWL) in the boiler.
 - If the Low Water Cut-Out (LWCO) is mechanical (a float), it must be blown down (drained) on a regular basis to prevent sediment from accumulating in the float chamber.
 - Improve water treatment to minimize boiler blowdown.
 - Helps control boiler water quality and operating efficiency by removing suspended and dissolved solids from the water in the boiler drum.
 - Test water daily and regenerate water softener when hardness exceeds 17 parts per million (or 1.0 Grain per Gallon).
 - Blowdown represents an energy loss to the steam system.
Chiller Basics

- Chiller components

Source: EERE
Chiller Basics

Efficiency ratings

- One ton (12,000 Btu/hr) equals 3.516 kW at 100% efficiency

- **Coefficient of Performance** (COP)

 \[
 \text{COP} = \frac{\text{Rated Cooling Output, kBtuh}}{\text{Rated electrical input, kBtuh}}
 \]

- Energy Efficiency Ratio (EER) for Peak

 \[
 \text{EER} = \frac{\text{Cooling output (Btuh)}}{\text{Electricity consumed (watt)}}
 \]

 \[
 \text{EER} = \text{COP} \times 3.413
 \]

- Integrated Energy Efficiency Ratio (IEER) for Part-Load

 \[
 \text{IEER} = (0.020 \times A) + (0.617 \times B) + (0.238 \times C) + (0.125 \times D)
 \]

 Cooling Capacity / IEER / 1000 x Annual Cooling Hours = kWh

- Full Load Value (FLV)

 \[
 \text{FLV} = \frac{\text{kW/ton efficiency rating}}{\text{COP}} = \frac{3.516}{\text{COP}} = \frac{12}{\text{EER}}
 \]

FLV (kW/ton) | COP | EER

0.6 | 5.9 | 20
0.75 | 4.7 | 16
1.0 | 3.5 | 12
1.5 | 2.3 | 8

Load Point | Cap | DB °F | Weight Factor

A | 100% | 95 | 2%
B | 75% | 81.5 | 61.7%
C | 50% | 68 | 23.8%
D | 25% | 65 | 12.5%
Chiller Maintenance

1. Maintain a daily log
2. Compressor
 a) Oil and refrigerant analysis
 b) Mechanicals
3. Water-side
 a) Chiller water tubes
 b) Cooling towers
4. Economizers and air-handling units
Chiller Compressor Maintenance

- Visual check of compressor oil
 - Oil level
 - Color (darker is worse)
 - Change oil on large systems once a year and clean particles from case

- Have the condition of your system fluid checked by a qualified lab, a minimum of four times per year

- Monitor for refrigerant leaks

- Periodically analyze refrigerant for moisture, acid, and rust

- Take superheat and subcooling temperature readings to obtain the chiller's maximum efficiency
Chiller Compressor Maintenance

- Inspect journal and thrust bearings and drive gears
- Check the motor terminals for pitting, corrosion, or loose connections
- Check amp draws on all motor loads
- Check the crankcase heaters for proper operation

Source: New York Power Authority
Chiller Compressor Maintenance

- **Centrifugal chillers**
 - Guide vane linkage assembly and drive mechanism
 - Guide vane control shaft seal

- **Reciprocating machines**
 - Compressor suction and discharge valves.

- **Check for high vibration on a capillary line (causes leaks) and secure all vibrating lines.**

Source: John Tomczyk, Ferris State University

Source: Atlas Copco Airpower
Check for tube corrosion

- Eddy current testing can identify internal pitting, freeze damage, cracks, and wear
- Remove the sludge with bristle brushes on the end of long metal rods.
- If badly fouled, use chemicals
- Ensure that the pipe insulation is dry and not broken off.

Source: Maverick Inspection Ltd.
Chiller Water-side Maintenance

- Apply proper water filtering
 - Full Stream
 - Side Stream
 - Basin Sweeping

Source: LAKOS
Chiller Water-side Maintenance

- Clean debris and dirt from water tower condenser and unclog spray nozzles, especially in the spring.

- Install water gauges so you can see pressure drops; particularly through the evaporator.
 - Water supplied to the unit should have a minimum differential pressure of 15 psi at the chiller.

- Check for proper water flow
 - Overflow can cause vibration, damaging the copper tubes.
 - Keep chilled water flow rate between 3 to 12 feet per second.
 - Put a bypass valve on the end of the pipe run going to the chillers.

Source: Denver Water
Chiller Water-side Maintenance

- Check fan belt for proper tension and any belt wear or improper alignment.
- Check fan bearings and lubricate, if necessary.
- For gear drives, check oil level.
- Clean strainer
 - If atmosphere is extremely dirty, it may be necessary to clean strainer weekly.

Source: Virginia Department of Mines, Minerals, and Energy
Chiller Econo

- Re-enabling economizers
 - Address any outstanding performance issues
- Maintain the calibration of enthalpy sensors
- Measure the difference between the indoor and outdoor pressure during economizer operation
 - Avoid building over-pressurization
 - Relief air system must have an adequate airflow path
Verify that the outside air sensor is in a good, representative location
 - Never in direct sun; not too close to air outlets

Make sure the mixed air sensors are located correctly as well
 - In a place with good mixing
Chiller Air Handler Maintenance

- Cycle your dampers open and closed periodically
 - Avoid stuck dampers
- Adjust actuators to achieve full damper closure
 - Close gaps
- Worn for blade and jamb seals.
- Grease serviceable (not sealed) blower shaft bearings

Source: Dave Moser, PECI
Resources

- American Boiler Manufacturers Association (ABMA)
- Council of Industrial Boiler Owners
- DOE Operations and Maintenance (O&M) Best Practices Guide
- Equipment Manufacturers Web Sites
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823.

- **Chilled Water and Cooling Towers**

 Energy Efficiency of Chilled Water Systems and Cooling Towers

 April 25-26: Medford, OR

 May 1-2: Twin Falls, ID

 September 10-11: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - **Energy Efficiency and Data Centers**
 - June 4: Bend, OR
 - August 22: Pocatello, ID

- **Energy Management:**
 - **Energy Management: Introduction to Best Practices**
 - April 25: Missoula, MT
 - November 12: Hermiston, OR
 - **Introduction to Energy Data Analysis and KPIs**
 - April 23: Everett, WA
 - August 27: Missoula, MT
 - October 15: Yakima, WA
 - October 17: Roseburg, OR
 - **Energy Data Analysis: Hands-on Workshop**
 - May 9: Portland, OR
 - November 14: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - **Motor System Management Best Practices**
 - Cancelled: February 27: Yakima, WA
 - **Adjustable Speed Drive Applications and Energy Efficiency**
 - July 23: Nampa, ID

- **Pneumatic Systems**
 - **Pneumatics Conveying Systems Energy Management**
 - June 6: Pocatello, ID

- **Pumps:**
 - **Pumping System Assessment Tool (PSAT)**
 - March 28: Spokane, WA
 - **Pumping Systems Optimization**
 - September 25: Longview, WA
 - **Optimizing Pumping Systems: A Measurement-Based Approach**
 - November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**
 - *Air Cooled Refrigeration and Energy Efficiency*
 - February 28: Shelton, WA (half-day)
 - *Industrial Refrigeration Systems Energy Management*
 - March 21: Pocatello, ID
 - June 27: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar http://neea.org/get-involved/calendar and look for it by date and title. Once you the webinar you want to register for, click on the title and you will find a description and registration. All webinars are free!

- **Data Centers:**
 - *Achieving Energy Efficiency in Data Centers*
 - March 19: 9-10am

- **Energy Management:**
 - *Developing and Energy Plan*
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - *Energy Management Opportunities for Industrial Customers*
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management contained:**
 - Energy Efficiency Investment Analysis
 - June 18: 9-10am PST
 - October 15: 9-10am PST

- **Motors:**
 - Adjustable Speed Drives
 - April 16: 9-10am PST

- **Power Factor:**
 - Improve Power Factor and Your Facility
 - December 17: 9-10am PST

- **Space Conditioning:**
 - Boiler and Chiller Maintenance for Maximum Efficiency
 - February 19: 9-10am PST
 - July 16: 9-10am PST
 - PGE Webinar: Intro to Ammonia Refrigeration
 - March 26: 8-9 am PST

http://neea.org/get-involved/calendar
Thank You

- Please take our online survey