Compressed Air Energy Management
Meet Your Panelist:

Mike Carter
NEEA Northwest Industrial Training

- Provided by:
 Northwest Regional Industrial Training Center:
 (888) 720-6823
 industrial-training@industrial.neea.org

- Co-sponsored by your utility and:
 Washington State University Extension Energy Program
 Bonneville Power Administration
 Northwest Food Processors Association

- Utility incentives and programs:
 Contact your local utility representative
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823.

- **Compressed Air:**
 Compressed Air Challenge – Level 1
 February 21: Boise, ID

- **Chilled Water and Cooling Towers**
 Energy Efficiency of Chilled Water Systems and Cooling Towers
 April 25-26: Medford, OR
 May 1-2: Twin Falls, ID
 September: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - **Energy Efficiency and Data Centers**
 - June: Bend, OR
 - August: Pocatello, ID

- **Energy Management:**
 - **Energy Management: Introduction to Best Practices**
 - April: Missoula, MT
 - November: Hermiston, OR
 - **Introduction to Energy Data Analysis and KPIs**
 - April 23: Everett, WA
 - August: Missoula, MT
 - October: Yakima, WA
 - October: Roseburg, OR
 - **Energy Data Analysis: Hands-on Workshop**
 - May: Portland, OR
 - November: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - Motor System Management Best Practices
 - February 27: Yakima, WA
 - Adjustable Speed Drive Applications and Energy Efficiency
 - July: Nampa, ID

- **Pneumatic Systems**
 - Pneumatics Conveying Systems Energy Management
 - June: Pocatello, ID

- **Pumps:**
 - Pumping System Assessment Tool (PSAT)
 - March 28: Spokane, WA
 - Pumping Systems Optimization
 - September: Longview, WA
 - Optimizing Pumping Systems: A Measurement-Based Approach
 - November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**
 - *Air Cooled Refrigeration and Energy Efficiency*
 February 28: Shelton, WA (half-day)
 - *Industrial Refrigeration Systems Energy Management*
 March 21: Pocatello, ID
 June: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar http://neea.org/get-involved/calendar and look for it by date and title. Once you the webinar you want to register for, click on the title and you will find a description and registration. All webinars are free!

- **Data Centers:**
 - *Achieving Energy Efficiency in Data Centers*
 - March 19: 9-10am

- **Energy Management:**
 - *Developing and Energy Plan*
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - *Energy Management Opportunities for Industrial Customers*
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management (continued):**
 - Energy Efficiency Investment Analysis
 - June 18: 9-10am PST
 - October 15: 9-10am PST

- **Motors:**
 - Adjustable Speed Drives
 - April 16: 9-10am PST

- **Power Factor:**
 - Improve Power Factor and Your Facility
 - December 17: 9-10am PST

- **Space Conditioning:**
 - Boiler and Chiller Maintenance for Maximum Efficiency
 - February 19: 9-10am PST
 - July 16: 9-10am PST
 - PGE Webinar: Intro to Ammonia Refrigeration
 - February 19: 9-10am PST

http://neea.org/get-involved/calendar
Compressed Air Energy Management

- Bottom line cost savings today!
 - Compressed air is the most expensive utility.
 - Compare annual energy cost for 1 hp air motor at $1,358 versus 1 hp electric motor at $194.
 - Easily averages $100 per cfm per year (3-shifts)!

Typical Demand Components

- Normal Production 50%
-Leaks 25%
-Excessive Pressure 5%
-Wrong application 20%
Compressed Air Energy Management

- Basics
- Supply Side
 - Compressors
 - Prime Movers
 - Controls
 - Air Treatment
- Demand Side
 - Distribution
 - Storage
- Energy-Savings Ideas

Source: Compressed Air Challenge
Compressed Air Basics

- **Heat of Compression**
 - Roughly 80% to 90% of the electrical energy going to a compressor becomes available heat.
 - Waste heat temperature rises.
 - Air delta 30°F to 40°F
 - Water discharge at 130°F max

Source: Atlas Copco
Compressed Air Basics

- Single-stage versus Multi-stage
 - Multi-stage more efficient.
 - Intercooling, load reduction, lower leakage potential
 - Higher pressures with multi-stage.

Source: Atlas Copco
Compressed Air Basics

- **Power versus Energy**

 - Kilowatt (kW) is a measure of **power**, like the speedometer of your car that records the rate at which miles are traveled.
 - A bigger engine is required to travel at a faster rate.

 - Kilowatt-hour (kWh) is a measure of **energy** consumption, like the odometer on your car (miles).

 - Energy cost = energy consumption x unit cost
 - kWh x $/kWh
 - A 100-kW compressor motor operating 16 hours per day costs $58,400 per year

 Energy cost = 100 kW x 5,840 hr x $0.10/kWh
 = $58,400
Compressed Air Basics

- **Power versus Energy**
 - **Motor power** (kW) = Horsepower x 0.746/motor efficiency
 - A 100 hp motor = 100 hp x 0.746/0.90 ME= 83 kW
 - Pay the price for improved energy efficiency!
 - The operating cost over the lifetime of a compressed air system can far exceed the original purchase price.

![Compressed Air Costs Pie Chart]

- Electricity 76%
- Equipment 12%
- Maintenance 12%
Compressed Air Basics

Source: DOE Compressed Air Challenge
Compressors

Reciprocating

Centrifugal

Helical-Screw

Source: Gardner Denver; used with permission

Source: Atlas Copco Airpower; used with permission

Source: Atlas Copco Airpower. Used with permission.
Compressors

- **Positive Displacement**
 - Reciprocating
 - Single-Acting
 - Double-Acting
 - Rotary
 - Helical-Screw
 - Liquid-Ring
- **Centrifugal**
- **Dynamic**
 - Variable capacity
 - Variable pressure
 - Constant pressure
 - Radial
 - Sliding-Vane
 - Lobe
Compressors

- Reciprocating single-acting air cooled compressor
 - Lowest first cost, but least efficient.

- Higher flow capacities require dynamic compressors
 - Centrifugal
 - Axial

Source: Research Associates
Compressors

- Spend a little more for a double-acting two-stage unit and achieve better efficiency.
- Lubricated compressors are often more efficient than a similar non-lubricated unit.
 - They contribute oil content to the system.
 - May impact the compressor air quality.

<table>
<thead>
<tr>
<th>Energy Consumption</th>
<th>Reciprocal</th>
<th>Rotary Screw</th>
<th>Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air cooled</td>
<td>Water cooled</td>
<td>Water cooled</td>
</tr>
<tr>
<td>bhp per 100 cfm</td>
<td>Single-Stage</td>
<td>Single-Stage</td>
<td>Two-Stage</td>
</tr>
<tr>
<td>kW per 100 cfm</td>
<td>22-27</td>
<td>21</td>
<td>16-18</td>
</tr>
</tbody>
</table>
Prime Movers

- Electric Motors
- Diesel or Gasoline Engine
- Steam or Natural Gas Turbine
The objective is to keep compressors off when they are not needed, thereby reducing energy use.

- Use the appropriate controls (unloading, modulating, variable speed).
 - Reduce air usage
 - Lower input energy
- For multiple units use a modern electronic central air management system.
 - Keeps all the baseline units on at full-load
 - Only one trim unit operates at part-load
Controls

- Evolution of lubricant-cooled rotary screw compressed air controls
 - Load/Unload (Blowdown)—low input kW is not reached until air/oil separator tank pressure is blown down.
 - It can take several seconds to several minutes for the pressure in a lubricant sump/separator to be fully relieved (blue line #2).
 - Inlet Valve Modulation—features a gradually closing inlet valve at the compressor inlet controlled by a regulator (red line #1).
Evolution of lubricant-cooled rotary screw compressed air controls

- **Variable Displacement** — the sealing point of the compression chamber is moved effectively reducing the rotor length and inlet air displacement.
 - Controlled by slide/turn/spiral/poppet valve.

- **Variable Speed Drive** — best applied to compressors that operate primarily as trim units, or as single units with loads below 75% to 80% demand.
 - Motor drive speed controlled to modify air supply.

Source: Air Technologies
Compressors operate at highest efficiency at full load or off.

- Optimum controls result in big savings.
- For example, at 50% full-load flow, kW input varies from 51% to 83%.

Source: Improving Compressed Air System Performance: A Sourcebook for Industry, DOE
Air Treatment

Source: Ingersoll-Rand Company
Dryers

- Refrigerated dryer water reduction process
 - Temperature reduction results in higher relative humidity.
 - Relative humidity stays at 100% due to constantly decreasing temperatures.
 - Water reduction only occurs when temperature decreases below dew point.

Source: Atlas Copco
Air Treatment

- **Dryers**
 - **Refrigerated air dryer (non-cycling)**
 - Nominal pressure dew point of 35°F to 50°F.
 - Power requirement is 0.8 kW/100 cfm.
 - Lower inlet pressures and higher inlet air temperatures decrease the dryer flow rating.
 - Given a 100 psig and 100°F inlet dryer rating:
 - 125 psig, 80°F = 143% flow rating
 - 80 psig, 130°F = 40% flow rating
Air Treatment

- **Dryers**
 - **Desiccant** air dryers
 - Desiccant adsorbs water vapor.
 - Provides a pressure dew point of -40°F to -100°F.
 - Requires some purge air (3% to 7% heater type or 12% to 15% heaterless).
 - Power requirement is 2 to 3 kW/100 cfm.
Air Treatment

- **Dryers**
 - **Membrane** dryers
 - 10% to 20% of full load rating sweep air required.
 - Sweep air actual use is directly proportional to amount of flow through the dryer.
 - Power requirement is 3 to 4 kW/100 cfm.
 - 40°F to -40°F Dew Point
Air Treatment

- **Dryers**
 - **Heat of compression/regeneration dryers**
 - Takes hot discharge air prior to aftercooler and routes it through the drying tower (50% RH) and removes water vapor from desiccant beads.
 - Saturated air then goes to aftercooler.
 - No purge air required.
 - Power requirement is 0.8 kW/100 cfm.
 - Recommended on oil-free systems only (to prevent a fire hazard).

Source: Henderson Engineering Company, Inc.
<table>
<thead>
<tr>
<th>Dryer Type</th>
<th>Dew Point</th>
<th>Air Capacity Reduction</th>
<th>Power Consumption</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
<td>35F to 50F</td>
<td>None</td>
<td>0.8 kW/100 cfm</td>
<td>- -</td>
</tr>
<tr>
<td>Desiccant</td>
<td>-40F to 100F</td>
<td>10% to 18%</td>
<td>2 to 3 kW/100 cfm</td>
<td>Coalescing prefilter</td>
</tr>
<tr>
<td>Membrane</td>
<td>40F to -40F</td>
<td>15% to 20%</td>
<td>3 to 4 kW/100 cfm</td>
<td>Low capacity</td>
</tr>
<tr>
<td>Heat of Compression</td>
<td>10F to -40F</td>
<td>None</td>
<td>0.8 kW/100 cfm</td>
<td>Centrifugal, Oil-free rotary screw</td>
</tr>
</tbody>
</table>
Distribution

- Required pressure levels must take into account system losses from dryers, separators, filters, and piping.
 - A properly designed system should have a pressure loss of much less than 10% of the compressor’s discharge pressure, measured from the receiver tank output to the point-of-use.

Source: Graco Inc.
Storage

- Air Receivers
 - Can provide dampening of pressure pulsations, radiant cooling, and collecting of condensate.
 - Stabilizes system header pressure and “flattens” the load peaks.
 - Provides the time needed to start or avoid starting standby air.
 - Storage buys time, not capacity.
Air Receivers

- Select optimum size for a short-duration peak load converting a high rate of flow into a low rate of flow in the main system.

Pump up decay formula

\[
V = \frac{T \times C \times P_a}{(P_1 - P_2)}
\]

- \(V\) = Receiver Capacity (\(\text{ft}^3\))
- \(T\) = Time (minutes) for pressure drop
- \(P_1\) = Initial Receiver Pressure (psig)
- \(P_2\) = Final Receiver Pressure (psig)
- \(C\) = Air Demand (acfm)
- \(P_a\) = Atmospheric Pressure (psia)
Energy-Savings Ideas

- **Know your real costs!**
 - Compare annual energy cost for 1 hp air motor at $1,358 versus 1 hp electric motor at $194.
 - 30 scfm at 90 psi required by air motor
 - 6 to 7 bhp at compressor shaft required for 30 scfm
 - 7 to 8 hp input electric power required for 6 to 7 bhp
 - 5-day per week, 2 shift, $0.05/kWh
 - Energy cost for 6,000 hrs at $0.10/kWh = $125/cfm
 - At 4 cfm/hp, a 250 hp compressor costs about $125,000 annually!
Energy-Savings Ideas

- Only use compressed air when it is absolutely necessary!
- Examples of potentially inappropriate uses of compressed air:
 - Open blowing
 - Sparging
 - Aspirating
 - Atomizing
 - Padding
 - Dilute-phase transport
 - Dense-phase transport
 - Vacuum generation
 - Personnel cooling
 - Open hand-held blowguns or lances
 - Diaphragm pumps
 - Cabinet cooling
 - Vacuum venturis

- If possible, switch to motors, mechanical actuators, and other means to accomplish the same function.
Energy-Savings Ideas

- Use 3/4” diameter hose for >3 hp tools or >50' lengths

- Leaks often account for 20% to 30% of compressor output.
 - A 1/32” leak in a 90 psi compressed air system would cost approximately $185 annually.

Source: Ingersoll-Rand
Energy-Savings Ideas

- Produce only the pressure you really need
 - Reducing system pressure by 10 psi saves 8% to 10%.
 - For every 1 pound per square inch (1 psi) increase in discharge pressure, energy consumption will increase by approximately 0.8% to 1% for a system in the 100 psig range with 30% to 50% unregulated usage.*

*Except for centrifugal compressors
Energy-Savings Ideas

- Produce only the pressure you really need
 - Demand expander valve
 - Separates the supply side (compressors) from the demand side (users).
 - Maintains a higher pressure on the supply side.
 - Claims of 10% to 15% energy savings.

Source: Gardner Denver

Diagram:
- 115 psig
- 90 psig
- Demand expander opens at 90 psig
- Receiver
- Trim unit
- 90 psig to plant
- 115 psig to plant

HP

150

150

150

150

Source: Questline Academy
Heat Recovery

- **Air-cooled** compressors offer recovery efficiencies of 80% to 90%.
 - Ambient atmospheric air is heated by passing it across the system’s aftercooler and lubricant cooler.
 - As a rule, approximately 5,000 British thermal units per hour (Btuh) of energy are available for each 100 cfm of capacity (at full-load).
 - Air temperatures of 30°F to 40°F above the cooling air inlet temperature can be obtained.
 - Space heating or water heating.

- **Water-cooled** compressors offer recovery efficiencies of 50% to 60% for space heating only.
 - Limited to 130°F
Compressed Air System Design

- When designing a compressed air system, what parameters should be included?
 - Average air demand (flow measurement, air survey, flow/pressure relationship)
 - Peak air demand (flow measurement, air survey, flow/pressure relationship)
 - Facility expansion plans
 - Maintenance requirements
 - Ventilation needed
 - Air quality required by application
 - Minimum required air pressure
Compressed Air System Design

- Working pressure directly affects the power requirement.
 - Minimize pressure drops!

\[\Delta p = 450 \times \frac{Q_v^{1.85} \times L}{d^5 \times p_i} \]

- \(\Delta p = \) pressure drop (bar)
- \(Q_v = \) Air flow, free air (l/s)
- \(d = \) Internal pipe diameter (mm)
- \(L = \) Length of the pipe
- \(p_i = \) Absolute initial pressure (bar)

Source: Atlas Copco

This is how the pressure drop across different components in the network affects the requisite working pressure.
John H. Harland Corporation printing plant in Atlanta, Georgia

- Fifteen new presses used compressed air in three components:
 - Batching modules (20 scfm at 130 psig)
 - Collators (1.1 scfm at 100 psig)
 - Print engines (also 1.1 scfm at 100 psig)

- Problems:
 - Air demand doubled to over 600 scfm.
 - Open-blowing air bars accounted for the greatest demand.
 - Joggers and lift cylinders were unable to work properly at the manufacturer’s recommended pressure levels.
 - Hoses supplying the batching modules from the airdrops were too small.
 - Many push-to-connect tube fittings tended to leak on start-up.
 - Condensation was collecting on the metal components of the print engines, causing engine shut down.

- Solutions
 - Compressed air bars were converted to blowers.
 - Hoses were replaced with shorter and larger diameter hoses.
 - Each module was provided with a dedicated storage tank to reduce source pressure.
 - Onboard compressors were converted to operate manually.

- Results
 - Each machine’s air demand declined from 27 scfm to only 4.5 scfm.
 - Site’s total air demand reduced to approximately 300 scfm at 81 psig.
 - Facility took 70 hp of compressor capacity offline.
 - Avoided having to purchase between 500 and 600 hp of compressor capacity ($500,000 + $200,000 O&M).
Southeastern Container blow molding plant in Enka, NC

- The blow molders require clean, dry compressed air at an operating pressure of 600 psig in order to produce a high quality Coca-Cola bottle.

- **Problems**
 - Blow off rate setting of 87% vented compressed air unnecessarily.
 - Three booster compressors had severe internal and external leakage rates around the valve cover plates and unloader valves.
 - Discovered 367 scfm of low-pressure leaks and 505 scfm of high-pressure leaks in the distribution system.
 - Vortex coolers used for cooling and hardening the bottlenecks was wasteful.

- **Solutions**
 - Blow off point set below 75% without any risk of surge.
 - Vortex coolers replaced by cabinet cooler.
 - Electromechanical vibrator replaced compressed air to prevent jamming of pre-form feed lines.
 - Central vacuum system replaced venturi vacuum producers for pick-and-place operation.
 - Replaced the unloader valves and cover plates around the booster compressors with newer, more advanced models.

- **Results**
 - Lowering of the blow-off set points saved $100,000.
 - Other actions saved $80,000.
Next Steps

- Facility air system audit?
- On-site training/seminar?
- Air system design consultation?

Workshops

- State Level, DOE EERE Industrial Tech Program sponsored
- Fundamentals of Compressed Air Systems, also web-edition (OH, UT, MN, CO, NV, IN, CA)
- Advanced Management of Compressed Air Systems (CA, IL)

Improving Compressed Air System Performance sourcebook

http://www.compressedairchallenge.org
Upcoming In-Class Trainings

Go to the NEEA calendar at http://neea.org/get-involved/calendar for trainings and events scheduled around the Northwest region.

To register for a training, look for it by date and title. Once you find the training you want to register for, click on the title and you will find a description and registration information. Trainings are posted to the calendar as dates are finalized, so please check the calendar regularly or contact the training team at 888-720-6823

- **Compressed Air:**

 Compressed Air Challenge – Level 1
 February 21: Boise, ID

- **Chilled Water and Cooling Towers**

 Energy Efficiency of Chilled Water Systems and Cooling Towers
 April 25-26: Medford, OR
 May 1-2: Twin Falls, ID
 September: Seattle, WA
Upcoming In-Class Trainings continued

- **Data Centers:**
 - Energy Efficiency and Data Centers
 - June: Bend, OR
 - August: Pocatello, ID

- **Energy Management:**
 - Energy Management: Introduction to Best Practices
 - April: Missoula, MT
 - November: Hermiston, OR
 - Introduction to Energy Data Analysis and KPIs
 - April 23: Everett, WA
 - August: Missoula, MT
 - October: Yakima, WA
 - October: Roseburg, OR
 - Energy Data Analysis: Hands-on Workshop
 - May: Portland, OR
 - November: Spokane, WA

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Motors:**
 - Motor System Management Best Practices
 - February 27: Yakima, WA
 - Adjustable Speed Drive Applications and Energy Efficiency
 - July: Nampa, ID

- **Pneumatic Systems**
 - Pneumatics Conveying Systems Energy Management
 - June: Pocatello, ID

- **Pumps:**
 - Pumping System Assessment Tool (PSAT)
 - March 28: Spokane, WA
 - Pumping Systems Optimization
 - September: Longview, WA
 - Optimizing Pumping Systems: A Measurement-Based Approach
 - November: Boise, ID

http://neea.org/get-involved/calendar
Upcoming In-Class Trainings continued

- **Refrigeration:**
 - *Air Cooled Refrigeration and Energy Efficiency*
 - February 28: Shelton, WA (half-day)
 - *Industrial Refrigeration Systems Energy Management*
 - March 21: Pocatello, ID
 - June: Twin Falls, ID

http://neea.org/get-involved/calendar
Upcoming Webinars

To register for a webinar, go to the NEEA calendar http://neea.org/get-involved/calendar and look for it by date and title. Once you the webinar you want to register for, click on the title and you will find a description and registration. All webinars are free!

- **Data Centers:**
 - *Achieving Energy Efficiency in Data Centers*
 - March 19: 9-10am

- **Energy Management:**
 - *Developing and Energy Plan*
 - May 21: 9-10am PST
 - September 17: 9-10am PST
 - *Energy Management Opportunities for Industrial Customers*
 - August 20: 9-10am PST
 - November 19: 9-10am PST

http://neea.org/get-involved/calendar
Upcoming Webinars continued

- **Energy Management contained:**
 - Energy Efficiency Investment Analysis
 - June 18: 9-10am PST
 - October 15: 9-10am PST

- **Motors:**
 - Adjustable Speed Drives
 - April 16: 9-10am PST

- **Power Factor:**
 - Improve Power Factor and Your Facility
 - December 17: 9-10am PST

- **Space Conditioning:**
 - Boiler and Chiller Maintenance for Maximum Efficiency
 - February 19: 9-10am PST
 - July 16: 9-10am PST
 - PGE Webinar: Intro to Ammonia Refrigeration
 - February 19: 9-10am PST

http://neea.org/get-involved/calendar
Thank You

- Please take our [online survey](#)